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Effective Field Theories

Low-energy approximation to a more fundamental theory

Description in terms of relevant degrees of freedom (e.g.
pions, nucleons,. . . )

Most general Lagrangian consistent with all symmetries of
underlying theory → Ward identities satisfied

Expansion in q/Λ, where

q: momenta and masses
Λ: energy scale
q � Λ

Not renormalizable in traditional sense, but infinities can be
absorbed in coefficients of the Lagrangian up to arbitrary order



Baryon chiral perturbation theory

Effective field theory of QCD at low energies

Typical scale: Λ ≈ 1 GeV (mρ, mN , 4πFπ)

Interaction of pions with nucleons and external fields

Approximate chiral symmetry: Spontaneously broken
⇒ Goldstone bosons (pions)

q: pion masses and external momenta � Λ

Organization of the Lagrangian in the number of (covariant)
derivatives acting on Goldstone boson fields and in the
number of quark mass terms

L = Lπ + LπN + · · ·
= L2 + L4 + · · ·+ L(1)

πN + L(2)
πN + · · ·



Power counting

Scheme to decide on relative importance of diagrams

Each diagram is assigned chiral order D

Renormalized diagram is of order qD

Loop integration in n dimensions ∼ O(qn)

Vertex from L(i)
πN ∼ O(qi )

Nucleon propagator ∼ O(q−1)
Pion propagator ∼ O(q−2)

Diagrams with higher D are less important

Relation between chiral and loop expansion

D ≤ 4 → one-loop calculation



Example

Power counting: D = n + 2 · 1− 1− 2 = n − 1
n→4−→ 3

Apply MS renormalization: Σr ∼ O(q2)⇔ D = 2

No consistent power counting for baryonic sector?

Gasser, Sainio, Švarc1

The fact that higher order loops start to contribute at
order q2 of course only means that the relevant
low-energy coupling constants at order q2, q3, . . . are
renormalized by those loops. The same phenomenon
would occur in the mesonic sector if one did not make
use of dimensional regularization.

1Nucl. Phys. B 307, 779 (1988)
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Heavy-baryon ChPT

Separate nucleon momentum into large part close to
mass-shell and small residual piece

pµ = mvµ + kµ

Perform additional 1/m expansion (similar to
Foldy-Wouthuysen)2

‘Standard’ M̃S as in mesonic sector leads to consistent power
counting

Variety of physical quantities calculated in HBChPT

Large number of terms at higher-orders

Wrong analytical behavior in limited number of specific
kinematic regimes

2Jenkins, Manohar, Phys. Lett. B 255, 558 (1991)



Covariant formulations of BChPT

Expansion in 1/m not necessary

Suitable choice of renormalization scheme leads to consistent
power counting

Infrared regularization3

Subtract closed form expression of integrals =̂ infinite number
of terms
Introduces unphysical cuts at high energies
In original formulation only applicable to one loop diagrams
with pion and nucleon lines
Can be reformulated and extended to multi-loop diagrams and
additional degrees of freedom

Extended on-mass-shell scheme (EOMS)
Only subtract those terms that violate the power counting
(finite number)
Can be applied to multi-loop diagrams and diagrams with
arbitrary degrees of freedom

3Becher, Leutwyler, Eur. Phys. J. C 9, 643 (1999)
MRS, Gegelia, Scherer, Phys. Lett. B 586, 258 (2004)
Fuchs, Gegelia, Japaridze, Scherer, Phys. Rev. D 68, 056005 (2003)



Chiral extrapolations

Chiral perturbation theory:

Expansion in quark masses

Natural tool to perform extrapolations of lattice results to
physical quark masses

Allows for more systematic error estimate

Convergence

Expansion parameter q/Λ

For q ∼ Mπ,Λ ∼ Mρ: q/Λ ∼ 20%

Even and odd orders: convergence slower than in mesonic
sector

Axial coupling gA: correction at order M3 ≈ 30%



Nucleon mass at O(q6)

Nucleon mass

Simplest quantity

Of interest for chiral extrapolations

At O(q6) contributions from

Tree-level diagrams with vertices up to order O(q6)
One-loop diagrams with vertices up to order O(q4)
Two-loop integrals with vertices up to order O(q2)

Need renormalization of two-loop diagrams4

4MRS, Gegelia, Scherer, Nucl. Phys. B 682, 367 (2004)



Chiral expansion to O(q6)

mN = m + k1M
2 + k2M

3 + k3M
4 ln

M

µ
+ k4M

4

+ k5M
5 ln

M

µ
+ k6M

5 + k7M
6 ln2 M

µ
+ k8M

6 ln
M

µ
+ k9M

6

Examples:5

k5 =
3g2

A

1024π3F 4

(
16g2

A − 3
)

k6 =
3g2

A

256π3F 4

[
g2

A +
π2F 2

m2
− 8π2(3l3 − 2l4)− 32π2F 2

gA
(2d16 − d18)

]

5MRS, Djukanovic, Gegelia, Scherer, Nucl. Phys. A 803, 68 (2008)



Numerical estimates

k5

Free of unknown low-energy constants

k5M
5 ln(M/mN) = −4.8 MeV

≈ 30% of leading nonanalytic contribution at one-loop order,
k2M

3

k6

l3, l4 known

d18 from Goldberger-Treiman discrepancy

d16 not reliably determined: πN → ππN or lattice fit

k6M
5 = 3.7 MeV or k6M

5 = −7.6 MeV



Chiral extrapolations
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3 for ∼ 370MeV?

Similar limit of applicability as obtained from other estimates
(nucleon mass, axial coupling gA)6

6Djukanovic, Gegelia, Scherer, Eur. Phys. J. A 29, 337 (2006)
Bernard, Meißner, Phys. Lett. B 639, 278 (2006)



Nucleon electromagnetic form factors

Dirac and Pauli form factors defined via

〈N(p′)|Jµ(0)|N(p)〉 = ū(p′)
[
γµF1(Q2) + i

σµνqν
2mN

F2(Q2)

]
u(p),

qµ = p′µ − pµ, Q2 = −q2

Sachs form factors

GN
E (Q2) = F N

1 (Q2)− Q2

4m2
n

F N
2 (Q2)

GN
M(Q2) = F N

1 (Q2) + F N
2 (Q2)



Electromagnetic form factors in BChPT

In manifestly Lorentz-invariant BChPT at order O(q4):7

Missing curvature → Higher-order terms

7Kubis, Meißner, Nucl. Phys. A 679, 698 (2001)
MRS, Gegelia, Scherer, Eur. Phys. J. A 26, 1 (2005)



Additional dynamical degrees of freedom

Vector meson dominance: important contribution to form
factors also in BChPT8

Heavy degrees of freedom in standard ChPT

Do not appear explicitly
Expand propagator in small momenta

1

q2 −M2
V

= − 1

M2
V

[
1 +

q2

M2
V

+

(
q2

M2
V

)2

+

(
q2

M2
V

)3

+O(q8)

]

Contributions absorbed in coupling constants at each order

Treat as explicit degrees of freedom

Resummation of some higher-order terms

8Kubis, Meißner, Nucl. Phys. A 679, 698 (2001)



Inclusion of vector mesons

Diagrams to order O(q4)

0

3

1

3

0 1 0 0 2 0 1 1 0 + 0 1 1

Tree diagrams contribute to F1(q2) and F2(q2)

Loop diagrams: Only nucleon and vector meson propagators
⇒ vanish in IR renormalization

Power counting + renormalization
⇒ Vector meson loops strongly suppressed



Electromagnetic form factors with vector mesons

Improved description by inclusion of vector mesons (ρ, ω, φ)9

Vector meson coupling constants taken from dispersion
relations

9MRS, Gegelia, Scherer, Eur. Phys. J. A 26, 1 (2005) [cf. Kubis, Meißner, Nucl. Phys.
A 679, 698 (2001)]



Complex-mass renormalization

Extend effective field theory to include other resonances

Unstable states ⇒ power counting?

Apply complex-mass renormalization10

Application to vector mesons, Roper, . . .

10Denner, Dittmaier, Roth, Wackeroth, Nucl. Phys. B 560, 33 (1999)
Djukanovic, Gegelia, Keller, Scherer, Phys. Lett. B 680, 235 (2009)
Djukanovic, Gegelia, Scherer, arXiv:0903.0736 [hep-ph]



Chiral extrapolations of form factors

Chiral expansion of form factors given by

F p
1 (Q2) = 1 + a1Q

2 + a2Q
4 + a3M

2Q2 + . . . . . .

Simultaneous expansion in Q2 and M2

For low Q2 terms like Q6M2 ∼ O(q8) are suppressed

For high Q2 would need to resum an infinite number of
formally higher-order terms

Domain of applicability: q . 350MeV?



Compton scattering

Compton scattering on proton

Access to proton (spin) polarizabilities

see V. Pascalutsa



Neutron (spin) polarizabilities

Use 3He to extract neutron polarizabilities11

Advantage: differential cross section large compared to
deuteron case

HBChPT can be used in EFT calculations in few-body
systems (χET )

One-body operators from HBChPT

Wave functions and two-body operators derived in EFT
formalism

First theoretical treatment of Compton scattering on 3He
performed in χET

Current results: O(q3), no ∆

Inclusion of ∆, extension to O(q4) are ongoing

11Shukla, Nogga, Phillips, Nucl. Phys. A 819, 98 (2009)



Double-polarization observable ∆x in 3He (120 MeV)
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FIG. 15: he four panels above correspond to ∆x with varying each of ∆γ1n (top left), ∆γ2n (top
right), ∆γ3n (bottom left) and ∆γ4n (bottom right), one at a time. The calculations are done in c.m.
frame at 120 MeV. The solid (black) curves correspond to the full O(e2Q) results. The long-dashed
(blue) curves correspond to ∆γin = −γin(O(e2Q)), dot-dashed (red) to ∆γin = −γin(O(e2Q))/2,
dotted (magenta) to ∆γin = γin(O(e2Q))/2 and dashed (green) to ∆γin = γin(O(e2Q)).

are not as simple as the Ais in Eq. (A2).

Tγ3He =
∑

i=1...6

A
3He
i ti,

A
3He
i = A1B

i + A2B
i . (76)

Here, A1B
i are the same as in Eq.(A2) to the extent that 3He is an “effective” neu-

tron. Meanwhile, we found that, numerically, A2B
i , i = 3 . . . 6 are negligible. Hence

we conclude that A2B
i does not contribute to the spin structure functions at O(e2Q).

Moreover, since the two protons (to a good approximation) have spins anti-aligned in a
spin-polarized 3He target, we can safely assume that all the sensitivity to the spin po-
larizabilities in the observables come from the unpaired neutron alone. This reasoning
supports our claim (made in the previous section) that the curves for 3He Comp-
ton scattering resemble those obtained from n-Compton scattering. Thus, Compton
scattering on 3He is an ideal avenue to extract the neutron spin polarizabilities.

2. Let us consider the double polarization observables, ∆z and ∆x. If we take Eq. (76)
to calculate these observables then we shall obtain expressions similar to Eqs. (3.19)

30

from top left to bottom right: vary γi,n, i = 1, 2, 3, 4



~γ3 ~He→ γ3He

Double-polarization observables ∆z , ∆x sensitive to spin
polarizabilities γ1, γ2, γ4

Sensitivity to different combination

Combine with results from Compton scattering on deuteron12

Curves look very similar to ~γ~n→ γn: polarized 3He as
neutron target

To be measured at HIγS

12Choudhury, Phillips, Phys. Rev. C 71, 044002 (2005)
Hildebrandt, Griesshammer, Hemmert, Phillips, Nucl. Phys. A 748, 573 (2005)
Hildebrandt, Griesshammer, Hemmert, arXiv:nucl-th/0512063



SU(3) ChPT

Can consider strange quark as small parameter13

SU(3) ChPT: baryon octet and octet of pseudo-Goldstone
bosons

Convergence?

Baryon masses to O(q4) in EOMS scheme: large cancellations
between different orders
Baryon magnetic moments in EOMS scheme: good
convergence

Further studies needed

13Lehnhart, Gegelia, Scherer, J. Phys. G 31, 89 (2005)
Geng, Camalich, Alvarez-Ruso, Vacas, Phys. Rev. Lett. 101, 222002 (2008)



Summary and Outlook

Baryon chiral perturbation theory

Effective field theory for hadronic processes at energies
E � 1 GeV

Applied to a variety of processes (static properties, πN,
electromagnetic,. . . )

Model-independent

Systematic error estimation

Natural tool for chiral extrapolations of lattice data

As all EFTs: limited domain of applicability (Mπ . 350MeV)



Current developments

Calculations up to order O(q6) (=̂ two-loop level)

Extension to higher-energies by inclusion of additional degrees
of freedom

Explicit ∆ degrees of freedom

Results now used as input in few-body calculations

Few-body calculations for neutron properties
(e.g. polarizabilities from 3He)

SU(3): convergence problematic?

Framework for study of isospin symmetry breaking





Compton scattering

Allows to study sub-structure of nucleon

At low photon energies can write effective Hamiltonian

Heff =
(p− QA)2

2m
+ QΦ− 1

2
4π(αE2 + βH2 + γE1E1σ · E× Ė

+ γM1M1σ ·H× Ḣ− 2γM1E2EijσiHj + 2γE1M2HijσiEj )

where Fij = 1
2 (∇iFj +∇jFi )

α/β: electric/magnetic polarizabilities
γXY : spin-dependent polarizabilities

Describe response of object to external e.m. field

Can be probed in Compton scattering

Note: BChPT gives information on cross-section, not just
polarizabilities



Proton polarizabilities in HBChPT

Up to (and including) NLO (O(q3)) only low-energy constants
are gA, f ,m (units of 10−4 fm3)

αp = 12.2, βp = 1.2

At NNLO (O(q4)) new LECs ⇒ fit to data

αp = (12.4± 1.1)+0.5
−0.5, βp = (3.4± 1.1)+0.1

−0.1

Baldin sum rule constrained fit

αp = (11.2± 0.2)+0.5
−0.5, βp = (2.8± 0.5∓ 0.2)+0.1

−0.1

PDG values (using dispersion relations)14

αp = 12.0± 0.6, βp = 1.9± 0.5

Success?
14V. Bernard, N. Kaiser and U. G. Meissner, Phys. Rev. Lett. 67, 1515 (1991)

S. R. Beane, M. Malheiro, J. A. McGovern, D. R. Phillips and U. van Kolck, Phys.
Lett. B 567, 200 (2003)



∆ contributions
Comparison with Compton scattering differential cross
section15
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Figure 3: Results of the O(Q4) EFT best fit to the differential cross sections for Compton
scattering on the proton at various angles, compared to the experimental data [17, 18].
The gray region is excluded from the fit. The magenta diamonds are Mainz data [18]; the
other symbols are explained in Ref. [12].

those obtained from other sources, in Ref. [12] it was shown that at the energies considered

here the differential cross section is largely insensitive to their values. (Asymmetries in

polarised Compton scattering would be far more sensitive.)

The recent re-evaluation of the Baldin sum rule [51] by Olmos de León et al. [18] gives:

αp + βp = (13.8± 0.4)× 10−4 fm3. (31)

If one considers only statistical errors the results (30) and (31) are marginally inconsistent

at the 1-σ level—see Fig. 4. Our values for αp and βp are consistent with the constraint

(31) once the potential impact of theoretical uncertainties is taken into account.

Including the constraint (31) in our fit leads to values for αp and βp consistent with

Eq. (30), but with smaller statistical errors, namely:

αp = (11.0± 0.5± 0.2)+0.5
−0.5 × 10−4 fm3,

βp = (2.8± 0.5∓ 0.2)+0.1
−0.1 × 10−4 fm3. (32)

In Eq. (32) we have left the systematic error unchanged, but have now included a second

error inside the brackets, whose source is the error on the sum-rule evaluation (31). The

smaller statistical errors are achieved at the expense of introducing certain assumptions

about the high-energy behavior of the Compton amplitude into the result, via the use of

the Baldin sum-rule result (31). The result (32) is in excellent agreement with a recent

determination of αp and βp which used an effective field theory with explicit Delta degrees

of freedom to fit all γp scattering data up to ω ∼ 170 MeV [36].

20

Deviation from data at higher photon energies → ∆
contributions

Inclusion of ∆ at order O(q3): αp ≈ 17, βp ≈ 13

Fixes: “Demote” some ∆ contributions, “promote” LECs
15S. R. Beane et al, Phys. Lett. B 567, 200 (2003)

R. P. Hildebrandt et al, Eur. Phys. J. A 20, 329 (2004)



Polarizabilities in BChPT

First calculation of polarizabilities performed in BChPT16

At order O(q3)
αp = 6.8, βp = −1.8

Blessing in disguise?

Large ∆ contributions can be accommodated without
problems

At order O(p4/∆)

αp = 10.8± 0.7± . . . , βp = 4.0± 0.7± . . .

But: very good description of differential cross section

Precision measurements at very low energies?

Calculation at order O(q4) (also VCS) is finished

16V. Bernard, N. Kaiser and U. G. Meissner, Phys. Rev. Lett. 67, 1515 (1991)
V. Lensky and V. Pascalutsa, arXiv:0907.0451 [hep-ph]
D. Djukanovic, PhD thesis (2008)



Neutron polarizabilities

Prediction of (H)BChPT to order O(q3)

αp = αn, βp = βn, γi ,p = γi ,n

No free neutron target:

Neutron photo-production: αn + βn = 15.2± 0.5

Neutron scattering on lead:

{
αn = 12.6± 1.5± 2.0
αn = 0.6± 5.0

Quasi-free Compton scattering on deuterium:



αn = 7.6± 14.0
βn = 1.2± 7.6
αn − βn = 9.8± 3.6± 2.2+2.1

−1.1



Compton scattering on 3He

HBChPT can be used in EFT calculations in few-body
systems (χET )

One-body operators from HBChPT

Wave functions and two-body operators derived in EFT
formalism

Use 3He to extract neutron polarizabilities17

Advantage: differential cross section large compared to
deuteron case

First theoretical treatment of Compton scattering on 3He
performed in χET

Current results: O(q3), no ∆

Inclusion of ∆, extension to O(q4) are ongoing

17D. Shukla, A. Nogga and D. R. Phillips, Nucl. Phys. A 819, 98 (2009)



Sensitivity to αn

Differential cross section with varying αn at different energies
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FIG. 12: The differential cross-sections in the c.m. frame with varying ∆αn. The top two panels
are for calculations at 60 MeV (left) and 80 MeV (right) and the bottom two panels are calculations
at 100 MeV (left) and 120 MeV (right). The solid (black) curves correspond to the full O(e2Q)
results. The long-dashed (blue) curves correspond to ∆αn = −4 × 10−4fm3, dot-dashed (red) to
∆αn = −2 × 10−4fm3, dotted (magenta) to ∆αn = 2 × 10−4fm3 and dashed (green) to ∆αn =
4× 10−4fm3

opposed to measuring one and then using the sum rule to get the other. A measurement
near θ = 90 deg would yield αn and then one could perform a forward/backward dcs ratio
measurement to extract βn. The various curves for ∆αn suggest that this ratio should not
vary much as ∆αn is varied, but, on the other hand the effect of ∆βn would be magnified
compared to what we show in Fig. 13.

In summary, the extraction of αn and βn is possible through coherent Compton scattering
on unpolarized 3He. Extraction of αn and βn in this manner would also serve as a check for
the extractions of αn and βn from the unpolarized γd experiments at MAXLab.

B. Polarized Compton Scattering

In Fig. 14 we plot ∆z vs. the c.m. angle at 120 MeV and the different panels correspond
to varying the four spin polarizabilities one by one. Here we choose to vary γin, i = 1 . . . 4
between ±100% of their O(e2Q) prediction (Eqs. (74)). Looking at the plots, the message
one gets is that this observable is quite sensitive to γ1n, γ2n and γ4n. Especially with the

27

Vary ∆αn = (−4, . . . , 4)× 10−4fm3



Sensitivity to βn

Differential cross section with varying βn at different energies
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FIG. 13: The differential cross-sections in the c.m. frame with varying ∆βn. The top two panels
are for calculations at 60 MeV (left) and 80 MeV (right) and the bottom two panels are calculations
at 100 MeV (left) and 120 MeV (right). The solid (black) curves correspond to the full O(e2Q)
results. The long-dashed (blue) curves correspond to ∆βn = −2 × 10−4fm3, dot-dashed (red) to
∆βn = 2 × 10−4fm3, dotted (magenta) to ∆βn = 4 × 10−4fm3 and dashed (green) to ∆βn =
6× 10−4fm3

expected increase in photon flux at HI!γS such differences in cross-sections should easily be
measured and we can expect to extract a linear combination of γ1n, γ2n and γ4n. The linear
combination that readily comes to mind is γ0n or γπn but we should bear in mind that we
are measuring ∆z as a function of angle which means that we should be able to extract the
combination γ1n − (γ2n + 2γ4n) cos θ (see Eq.(73)). Observing the different plots in Fig. 14
we can already see the effect of the cos θ term in the panels for γ2n and γ4n.

Next, in Fig. 15 we plot ∆x vs. the c.m. angle at 120 MeV and the different panels
correspond to varying the four spin polarizabilities one by one. This figure also suggests
that we are sensitive to a combination of the same spin polarizabilities as in ∆z but this
combination is obviously not the same as before i.e. γ1n − (γ2n + 2γ4n) cos θ. We can say
that because the curves in the right panels of Fig. 15 should coincide at 90 deg because
of the cos θ term but they do not. Hence, we should be able to extract a different linear
combination of the γns from ∆x.

Thus, we are sensitive to two different linear combinations of γ1n, γ2n and γ4n through ∆z

and ∆x and at least we can expect that we can extract one, say γ1n unambiguously, out of

the three and put constraints on the values of the other two. For !γ !d scattering we found that

28

Vary ∆βn = (−2, . . . , 6)× 10−4fm3



Spin polarizabilities

In the following:

γE1E1 = −γ1 − γ3, γM1M1 = γ4

γM1E2 = γ2 + γ4, γE1M2 = γ3

Very little information on spin polarizabilities γi

Backward spin polarizability γπ = γ1 + γ2 + 2γ4: in agreement
with HBChPT at order O(q3) for proton and neutron

Forward spin polarizability γ0 = γ1 − (γ2 + 2γ4)

Can be accessed in double-polarization experiments

Observables:

∆z =
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↑←



∆z in 3He (120 MeV)
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FIG. 14: The four panels above correspond to ∆z with varying each of ∆γ1n (top left), ∆γ2n (top
right), ∆γ3n (bottom left) and ∆γ4n (bottom right), one at a time. The calculations are done in c.m.
frame at 120 MeV. The solid (black) curves correspond to the full O(e2Q) results. The long-dashed
(blue) curves correspond to ∆γin = −γin(O(e2Q)), dot-dashed (red) to ∆γin = −γin(O(e2Q))/2,
dotted (magenta) to ∆γin = γin(O(e2Q))/2 and dashed (green) to ∆γin = γin(O(e2Q)).

we were sensitive to a combination of γ1n and γ3n [39]. This means that if we combine all the
information, we should be able to extract at least two of the four spin polarizabilities and
constrain the remaining two. Also we can definitely hope that through polarized Compton
scattering on deuteron and 3He we can perform a nuclei independent extraction of at least
one of the neutron spin polarizabilities, presumably γ1n.

It is worth mentioning here that the curves in Figs. 14 and 15 look very similar to those
obtained if one calculates the reaction "γ"n→ γn, i.e. Compton scattering off a free neutron.
This would then suggest that polarized 3He indeed behaves as an “effective” neutron target.

VI. POLARIZED 3HE IS INTERESTING

In this section we would like to point out a couple of very interesting facts about Compton
scattering on polarized 3He.

1. We know that 3He is a spin-1
2

target and hence, we should be able to write the photon
scattering amplitude as a sum of six structure functions like in Eq.(A2). However in
this case these six functions have to be a sum of one-body and two-body parts and
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from top left to bottom right: vary γi,n, i = 1, 2, 3, 4 by ±100% of O(q3) prediction
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